Presynaptic N-type calcium channels interact with syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) through a binding site in the intracellular loop connecting domains II and III of the ␣ 1 subunit. This binding region was loaded into embryonic spinal neurons of Xenopus by early blastomere injection. After culturing, synaptic transmission of peptide-loaded and control cells was compared by measuring postsynaptic responses under different external Ca 2ϩ concentrations. The relative transmitter release of injected neurons was reduced by ϳ25% at physiological Ca 2ϩ concentration, whereas injection of the corresponding region of the L-type Ca 2ϩ channel had virtually no effect. When applied to a theoretical model, these results imply that 70% of the formerly linked vesicles have been uncoupled after action of the peptide. Our data suggest that severing the physical interaction between presynaptic calcium channels and synaptic proteins will not prevent synaptic transmission at this synapse but will make it less efficient by shifting its Ca 2ϩ dependence to higher values.