2024
DOI: 10.3390/math12030472
|View full text |Cite
|
Sign up to set email alerts
|

CLG: Contrastive Label Generation with Knowledge for Few-Shot Learning

Han Ma,
Baoyu Fan,
Benjamin K. Ng
et al.

Abstract: Training large-scale models needs big data. However, the few-shot problem is difficult to resolve due to inadequate training data. It is valuable to use only a few training samples to perform the task, such as using big data for application scenarios due to cost and resource problems. So, to tackle this problem, we present a simple and efficient method, contrastive label generation with knowledge for few-shot learning (CLG). Specifically, we: (1) Propose contrastive label generation to align the label with dat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 53 publications
0
0
0
Order By: Relevance