2022
DOI: 10.53106/160792642022092305016
|View full text |Cite
|
Sign up to set email alerts
|

Click-Through Rate Prediction Algorithm Based on Modeling of Implicit High-Order Feature Importance

Abstract: <p>Click-through rate (CTR) prediction plays a central role in online advertising and recommendation systems. In recent years, with the successful application of deep neural networks (DNNs) in many fields, researchers have integrated deep learning into CTR prediction algorithms to model implicit high-order features. However, most of these existing methods unify the weights of implicit higher-order features to predict user behaviors. The importance of such features of different dimensions for predicting u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?