Personalization is the adaptation of the services to fit the user's interests, characteristics and needs. The key to effective personalization is user profiling. Apart from traditional collaborative and content-based approaches, a number of classification and clustering algorithms have been used to classify user related information to create user profiles. However, they are not able to achieve accurate user profiles. In this paper, we present a new clustering algorithm, namely Multi-Dimensional Clustering (MDC), to determine user profiling. The MDC is a version of the Instance-Based Learner (IBL) algorithm that assigns weights to feature values and considers these weights for the clustering. Three feature weight methods are proposed for the MDC and, all three, have been tested and evaluated. Simulations were conducted with using two sets of user profile datasets, which are the training (includes 10,000 instances) and test (includes 1000 instances) datasets. These datasets reflect each user's personal information, preferences and interests. Additional simulations and comparisons with existing weighted and non-weighted instance-based algorithms were carried out in order to demonstrate the performance of proposed algorithm. Experimental results using the user profile datasets demonstrate that the proposed algorithm has better clustering accuracy performance compared to other algorithms. This work is based on the doctoral thesis of the corresponding author.