Abstract. Given a singular Riemannian foliation on a compact Riemannian manifold, we study the mean curvature flow equation with a regular leaf as initial datum. We prove that if the leaves are compact and the mean curvature vector field is basic, then any finite time singularity is a singular leaf, and the singularity is of type I. These results generalize previous results of Liu and Terng, Pacini and Koike. In particular our results can be applied to partitions of Riemannian manifolds into orbits of actions of compact groups of isometries.