2020
DOI: 10.48550/arxiv.2008.04679
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ClimAlign: Unsupervised statistical downscaling of climate variables via normalizing flows

Abstract: Downscaling is a common task in climate science and meteorology in which the goal is to use coarse scale, spatio-temporal data to infer values at finer scales. Statistical downscaling aims to approximate this task using statistical patterns gleaned from an existing dataset of downscaled values, often obtained from observations or physical models. In this work, we investigate the application of domain alignment to the task of statistical downscaling. We present ClimAlign, a novel method for unsupervised, genera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?