Questions
Are community composition and species richness of aquatic macrophytes determined primarily by local (habitat heterogeneity and water quality) or regional (climate) patterns at regional scale? Do two macrophyte functional groups (i.e. emergent and submerged macrophytes) respond similarly to local and regional patterns? Are lake macrophytes and explanatory variables geographically structured?
Location
The US state of Minnesota.
Methods
The community composition and species richness of aquatic flora was studied using presenceâabsence data in 454 lakes, covering the entire US state of Minnesota. In addition, community composition and species richness of emergent and submerged macrophytes was investigated separately. Variation partitioning based on partial redundancy analysis and partial linear regression was used to study the relative roles of water quality, habitat heterogeneity, climate and sampling effort in explaining community composition and species richness of lake macrophytes, respectively.
Results
Macrophyte community composition and species richness (all taxa and two functional groups) were explained by water quality and climate. Alkalinity and total phosphorus were water quality variables that most affected community composition of aquatic flora, and macrophyte species richness decreased with increasing concentrations of these two variables. Maximum temperature of the warmest month and mean annual temperature most affected plant community composition, whereas species richness had a negative relationship with minimum temperature of the coldest month. Most significant explanatory variables (e.g. alkalinity, total phosphorus and temperature) were geographically structured, showing a latitudinal change.
Conclusions
Community composition and species richness of macrophytes were congruently influenced by regional (climate) and local patterns (water quality) at regional scale. Community composition and species richness of helophytes and submerged macrophytes were equally explained by environmental gradients. The latitudinal change in these most significant environmental variables was related to calcareous soils and intensive agriculture, which were situated in the southern part of the state. Macrophyte species richness showed a reverse latitudinal gradient, which was likely due to high nutrient concentrations in southern latitude lakes. Water quality primarily filters species from the regional species pool, allowing only species tolerating high nutrient concentrations, e.g. invasive plants, to survive at southern latitudes.