Biological invasions represent a major threat to biodiversity, especially in cold insular environments characterized by high levels of endemism and low species diversity which are heavily impacted by global warming. Terrestrial invertebrates are very responsive to environmental changes, and native terrestrial invertebrates from cold islands tend to be naive to novel predators. Therefore, understanding the relationships between predators and prey in the context of global changes is essential for the management of these areas, particularly in the case of non-native predators. Merizodus soledadinus (Guérin-Méneville, 1830) is an invasive non-native insect species present on two subantarctic archipelagos, where it has extensive distribution and increasing impacts. While the biology of M. soledadinus has recently received attention, its trophic interactions have been less examined. We investigated how characteristics of M. soledadinus, its density, as well as prey density influence its predation rate on the Kerguelen Islands where the temporal evolution of its geographic distribution is precisely known. Our results show that M. soledadinus can have high ecological impacts on insect communities when present in high densities regardless of its residence time, consistent with the observed decline of the native fauna of the Kerguelen Islands in other studies. Special attention should be paid to limiting factors enhancing its dispersal and improving biosecurity for invasive insect species.