Global warming is affecting agribusiness in its economic aspects. Therefore, the prediction of the evolution of Brazilian beef cattle production cost was made using the IPCC forecast scenario for global warming. The methodology consisted of two steps: (i) the development of a fuzzy model that estimated the grazing land capacity (RP) decrease risk as a function of the changes in the average total rain index, air temperature and increase in extension of the dry season; and (ii) the design of an algorithm for predicting the decrease in production as function of the RP fuzzy model, that results in the impact in beef cattle productivity, and consequent increase in production costs. Historical environmental data from important producing counties in the Cerrado were organized and a set of fuzzy Gaussian functions were developed, and three possible settings (optimistic, medium and pessimistic) were considered. The decrease in beef cattle productivity was estimated using the losses in production due to the increase in air temperature and vulnerability of pasture capacity. The boundary settings for the total increase of production cost scenario used the number of animals per area of grazing land, the adoption of grain supplement and its future scenario; and the result output function pointed to a threshold within a variation from an increase in production cost of 80% (optimistic) to 160% (pessimistic). Under the optimistic scenario the total cost of Brazilian beef cattle production in the Cerrado became near to US$ 2.88 kg -1 , while in the pessimistic scenario this cost reached US$ 4.16 kg -1 , challenging the international competitiveness of this economic segment. Key words: dry season, environmental temperature, fuzzy simulation, mathematical modeling Impacto do aquecimento global no custo de produção de carne bovina no Brasil RESUMO: O aquecimento global afeta o agronegócio em seus aspectos econômicos. Foi feita previsão da evolução do custo de produção de carne bovina brasileira usando a predição de aquecimento global do IPCC. A metodologia consistiu de duas etapas: (i) o desenvolvimento de modelo fuzzy que estimou o risco de decréscimo da capacidade de pastagens (RP) em função das mudanças no índice pluviométrico total, na temperatura do ar e na extensão da estação de seca; e (ii) o desenvolvimento de um algoritmo para predição do decréscimo da produção em função de um modelo fuzzy de RP que resulte no impacto na produtividade bovina de corte e conseqüente aumento no custo de produção. Foram organizados os dados históricos de fatores ambientais dos municípios importante produção no Cerrado e um conjunto de funções Gaussianas fuzzy foi desenvolvido e três estimativas possíveis (otimista, média e negativa) foram consideradas. O decréscimo na produtividade do gado foi estimado usando as perdas de produção devido ao acréscimo da temperatura bem como da vulnerabilidade da capacidade de pastagem. O estabelecimento dos limites para o cenário do acréscimo do custo de produção usou o número de unidade animal por ár...