Abstract. Climate change is anticipated to alter the demand and supply of water at the earth's surface. Since many societal impacts from a lack of water happen under drought conditions, it is important to understand how droughts may develop with climate change. This study shows how hydrological droughts will change across Europe with increasing global warming levels (GWL of 1.5, 2 and 3 K above preindustrial temperature). We employ a low-flow index derived from river discharge simulations of a spatially-distributed physically-based hydrological and water use model, which was forced with a large ensemble of regional climate model projections under a high emissions (RCP8.5) and moderate mitigation (RCP4.5) pathway. Different traits of drought, including severity, duration and frequency, were investigated. The projected changes in these treats identify four main sub-regions in Europe that are characterized by somehow homogeneous and distinct behaviours with a clear southwest/northeast contrast. The Mediterranean and Boreal sub-regions of Europe show strong, but opposite, changes at all three GWLs, with the former area mostly interested by stronger droughts (with larger differences at 3 K) while the latter sees a reduction in droughts. In the Atlantic and Continental sub-regions the changes are less marked and characterized by a larger uncertainty, especially at the 1.5 and 2 K GWLs. Combining the projections in drought hazard with population and agricultural information shows that with 3 K global warming an additional 11 million people and 4.5 million ha of agricultural land will be exposed to droughts every year, on average. These are mostly located in the Mediterranean and Atlantic regions of Europe.