Background/Aims
The European larch is a pioneer tree and a valuable economic resource in subalpine ecosystems, thus playing crucial roles to ecosystem services and human activities. However, their ectomycorrhizal fungal community remains unknown in high altitudinal natural habitats. Here, we explore the mycobiont diversity of Larix decidua var. decidua between naturally rejuvenated and adult trees, compare ectomycorrhizal colonization patterns in geographically disjunct areas within the Alps of South Tyrol, Italy, characterized by distinct climatic conditions, and explore turnover rates across various seasons.
Methods
Our approach combines morphotyping of mycorrhized root tips with molecular analysis. Particular effort was given to monitor both ectomycorrhizal host-specialist and -generalist fungi.
Results
Both adult and young trees show a 100% mycorrhization rate, with a total diversity of 68 ectomycorrhizal species. The ectomycorrhizal composition is dominated by typical host specialists of larch trees (e.g., Lactarius porninsis, Russula laricina, Suillus cavipes, S. grevillei, S. viscidus), which are widely distributed across sites. A rich diversity of host generalists was also detected. The composition of rare species within a habitat was comparatively consistent during one sampling campaign, but exhibited significant differences among individual sampling campaigns. The ectomycorrhizal compositions were only weakly correlated with distinct climatic conditions and tree ages. However, species richness and diversity, particularly of generalist fungi, was consistently higher in warmer, drier sites compared to cooler, more humid ones.
Conclusions
This study suggests potential mycobiont community shifts across climatic conditions with significant implications for the adaptability and resilience of subalpine forests in the face of climate change.