2019
DOI: 10.1038/s41598-019-44068-8
|View full text |Cite
|
Sign up to set email alerts
|

Climate controls on snow reliability in French Alps ski resorts

Abstract: Ski tourism is a major sector of mountain regions economy, which is under the threat of long-term climate change. Snow management, and in particular grooming and artificial snowmaking, has become a routine component of ski resort operations, holding potential for counteracting the detrimental effect of natural snow decline. However, conventional snowmaking can only operate under specific meteorological conditions. Whether snowmaking is a relevant adaptation measure under future climate change is a widely debat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

4
77
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 61 publications
(85 citation statements)
references
References 32 publications
4
77
0
4
Order By: Relevance
“…Nevertheless, in situ time series have long been used for the assessment of both snow and climatic conditions at the local and regional scales. Beyond the use of in situ data for the calculation of indicators for each location, in situ *Depending on the specific snow model setting, "technical" may refer to "natural but groomed," "natural and machine-made," and "natural, machinemade, and groomed" snow data can be interpolated or extrapolated in space, in order to generate driving data for snowpack models spanning a wider range of locations within and around ski areas (e.g., Hanzer et al 2014) and compute spatially distributed indicator values for entire ski areas (e.g., François et al 2014;Spandre et al 2019a). In contrast, mountain areas are generally inadequately represented in large-scale climate datasets, both due to a lack of some of the key processes in mountain regions in the models and to their too coarse spatial resolution (Hock et al 2020).…”
Section: Geographical Settings and Time Periodsmentioning
confidence: 99%
“…Nevertheless, in situ time series have long been used for the assessment of both snow and climatic conditions at the local and regional scales. Beyond the use of in situ data for the calculation of indicators for each location, in situ *Depending on the specific snow model setting, "technical" may refer to "natural but groomed," "natural and machine-made," and "natural, machinemade, and groomed" snow data can be interpolated or extrapolated in space, in order to generate driving data for snowpack models spanning a wider range of locations within and around ski areas (e.g., Hanzer et al 2014) and compute spatially distributed indicator values for entire ski areas (e.g., François et al 2014;Spandre et al 2019a). In contrast, mountain areas are generally inadequately represented in large-scale climate datasets, both due to a lack of some of the key processes in mountain regions in the models and to their too coarse spatial resolution (Hock et al 2020).…”
Section: Geographical Settings and Time Periodsmentioning
confidence: 99%
“…Snow conditions in each of the ski resorts were simulated using the SURFEX/ISBA-Crocus model (Brun et al, 1992;Vionnet et al, 2012) with recent developments referred to as Crocus-Resort allowing explicit consideration of snowmaking and grooming (Spandre et al, 2016(Spandre et al, , 2019. In French mountain areas, Crocus is generally driven by meteorological data provided by the SAFRAN system (Durand et al, 1993).…”
Section: Snow Cover Modellingmentioning
confidence: 99%
“…In order to feed the Crocus-Resort model and the hydrological models, the hourly meteorological time series over the period 1950-2100 were calculated using the ADAMONT method developed by Verfaillie et al 2017, using the SAFRAN reanalysis as an observation base for the period 1960-1990. In order to cover the uncertainties associated with possible climate changes in the coming decades, thirteen distinct climate scenarios were used, each composed of global model driving a regional model (see Verfaillie et al, 2018 andSpandre et al, 2019, for the list of models used).…”
Section: Climate Change Scenariosmentioning
confidence: 99%
“…Ces échanges ont également permis la collecte de données complémentaires (consommation et approvisionnement en eau, pilotage des installations et fréquentation) nécessaires pour contextualiser notre approche et ainsi comparer les valeurs issues des simulations avec celles mesurées. Les conditions d'enneigement sur chacun des domaines skiables ont été modélisées en utilisant le modèle SURFEX/ISBA-Crocus (Brun et al, 1992 ;Vionnet et al, 2012) avec les récents développements baptisés Crocus-Resort permettant la prise en compte explicite de la production de neige et du damage (Spandre et al, 2016, Spandre et al, 2019. Dans les zones de montagnes françaises, Crocus est généralement utilisé en association avec le Système d'Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) (Durand et al, 1993).…”
unclassified
“…Afin d'alimenter le modèle Crocus-Resort et le modèles hydrologiques, les chroniques météorologiques horaires sur la période 1950-2100, spatialisées sur les massifs, ont été calculées grâce à la méthode ADAMONT développée par Verfaillie et al (2017), en utilisant la réanalyse SAFRAN comme base d'observation pour la période 1960-1990. Afin de couvrir les incertitudes associées aux évolutions possibles du climat dans les décennies à venir, nous avons utilisé treize scénarios climatiques distincts, composés chacun du couple d'un modèle global avec un modèle régional(voir Verfaillie et al, 2018et Spandre et al, 2019, pour la liste des modèles utilisés).…”
unclassified