Question: Which environmental variables best explain patterns in the vegetation of biancane badlands? What is the role of spatial scales in structuring the vegetation of biancane badlands within the agricultural matrix?\ud
Location: Five biancane badlands in Central Italy (Tuscany).\ud
Methods: An object-oriented approach on high-resolution multispectral images was used to classify physiognomic vegetation types in five biancane badlands.Within each badland, data on vascular plant species abundance were\ud
collected using a stratified random design. Variation partitioning based on partial redundancy analysis was used to evaluate the contribution of three sets of environmental predictors, recorded at the spatial scales of plot, patch and biancane badland in explaining patterns in plant community composition.\ud
Results: Environmental variables included in the final model – electrical conductivity and carbon/nitrogen ratio (plot scale), shape index (patch scale) and area (biancane badland scale) – accounted for 15.5% of the total variation in plant community composition. Soil characteristics measured at the plot level\ud
explained the majority of variation. In the smallest badlands, Bromus erectus perennial grasslands were absent, while annual grasslands, linked with harsh soil conditions (i.e. high soil salinity), were not affected by either the surface area of biancane badlands or by the soil nitrogen availability.\ud
Conclusions: The identification of the major predictors of patterns in remnant vegetation requires conducting investigations at multiple spatial scale. Management strategies should operate at different spatial scale, preventing any further reduction in the size of existing badlands and relying on habitat- instead of area-focused conservation practices