Abstract
Background
Conventional agriculture is increasingly based on highly specialized, highly productive farms. It has been suggested that 1) this specialization leads to farms that lack resilience to changing market and environmental conditions; and 2) that by decreasing agricultural diversity, the resilience of the farming system also decreases.
Methods
We used agricultural gross margin (GM) forecasts from 1966 to 2010 and remote sensing data from agricultural landscapes in the lowland UK, in conjunction with modern portfolio theory, to test the hypothesis that decreasing land-use diversity results in landscapes that provide higher, but more volatile, economic returns. We considered the role of spatial scale on the expected levels of volatility and resilience of agricultural returns.
Results
We found that: 1) there was a strong linear trade-off between expected GMs and the expected volatility of those GMs in real lowland agricultural landscapes in the UK; 2) land-use diversification was negatively correlated with expected GMs from agriculture, and positively correlated with decreasing expected volatility in GMs; 3) the resilience of agricultural returns was positively correlated with the diversity of agricultural land use, and the resilience of agricultural returns rose quickly with increased land-holding size at small spatial extents, but this effect diminished after landholdings reached 12,000 hectares.
Conclusions
Land-use diversity may have an important role in ensuring resilient agricultural returns in the face of uncertain market and environmental conditions, and land-holding size plays a pivotal role in determining the relationships between resilience and returns at a landscape scale. Creating finer-grained land-use patterns based on pre-existing local land uses may increase the resilience of individual farms, while maintaining aggregate yield across landscapes.