Urban green spaces (UGSs) are integral to urban ecosystems, providing multiple benefits to human well-being. However, previous studies mainly focus on the quantity or quality of UGSs, with less emphasis on a comprehensive analysis. This study systematically examined the spatiotemporal UGS dynamics in the Pearl River Delta urban agglomeration (PRDUA) in China from the perspectives of the area, spatial configuration, and quality, using the high spatial resolution (30 m) Landsat-derived land-cover data and Normalized Difference Vegetation Index (NDVI) data during 1985–2021. Results showed the UGS area in both the old urban districts and expanded urban areas across all nine cities in the PRDUA has experienced a dramatic reduction from 1985 to 2021, primarily due to the conversion of cropland and forest into impervious surfaces. Spatially, the fragmentation trend of UGSs initially increased and then weakened around 2010 in nine cities, but with an inconsistent fragmentation process across different urban areas. In the old urban districts, the fragmentation was mainly due to the loss of large patches; in contrast, it was caused by the division of large patches in the expanded urban areas of most cities. The area-averaged NDVI showed a general upward trend in urban areas in nearly all cities, and the greening trend in the old urban districts was more prevalent than that in the expanded urban areas, suggesting the negative impacts of urbanization on NDVI have been balanced by the positive effects of climate change, urbanization, and greening initiatives in the PRDUA. These findings indicate that urban greening does not necessarily correspond to the improvement in UGS states. We therefore recommend incorporating the three-dimensional analytical framework into urban ecological monitoring and construction efforts to obtain a more comprehensive understanding of UGS states and support effective urban green infrastructure stewardship.