The spatial variation of the statistical characteristics of the extreme dry events, such as the annual maximum dry spell length (AMDSL), is a key practice for regional drought analysis and mitigation management. For arid and semi arid regions, where the data set is short and insufficient, the regionalization methods are applied to transfer at-site data to a region. The spatial variation and regional frequency distribution of annual maximum dry spell length for Isfahan Province, located in the semi arid region of Iran, was investigated using a daily database compiled from 31 rain gauges and both L-moment and multivariate analysis. The use of L-moment method showed a homogeneous region over entire province with generalized logistic distribution (GLOG) as the regional frequency distribution. However, the cluster analysis performed two regions in west and east of the province where L-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The principal component analysis was applied on at-site statistics of AMDSL and found the L-coefficient of skewness (LCs) and maximum AMDSL the main variables describing the spatial variation of AMDSL over the Isfahan Province. The comparison of two homogeneous regions also proved the difference between two regions. Therefore, this study indicates the advantage of the use of multivariate methods with L-moment method for hydrologic regionalization and spatial variation of drought statistical characteristics.