The Azorean Cryptomeria japonica forest operations and wood industry generate considerable foliage biomass residues that are used for local essential oil (EO) production. However, research on seasonal variation of C. japonica EO remains scarce. In this study, the EOs from fresh Azorean C. japonica foliage (Az–CJF) collected in autumn (Aut) and spring (Spr) were obtained via hydrodistillation and investigated for their physical properties, yield, chemical composition, and bioactivities. Both EOs presented a strong odor, a yellowish color, a density around 0.9 g·mL−1, and similar yields (approximately 1% v/w, dry matter). Nevertheless, the GC–MS analyses showed a decrease in monoterpene hydrocarbons (MH) and an increase in oxygenated sesquiterpenes (OS) contents in Spr–EO compared with Aut–EO (16% vs. 35% for MH and 45% vs. 31% for OS, respectively). In addition, the predominant components were kaur-16-ene (23%) for Spr–EO and phyllocladene (19%) for Aut–EO, revealing that both EOs were rich in diterpene hydrocarbons (29% vs. 26%). Concerning its toxicity against brine shrimp, a low mortality (0–38%) was observed at a concentration range of 100–180 μg·mL−1. Regarding the anti-cholinesterase properties, both EOs were inactive against acetylcholinesterase but showed anti-butyrylcholinesterase activity superior to (–)-α-pinene, a major compound of Az–CJF EO (IC50 values: 84, 148, and 648 μg·mL−1 for Spr–EO, Aut–EO, and α-pinene, respectively). Overall, the results indicate the potential benefit of both seasonal EOs in Alzheimer’s disease treatment. In conclusion, this study demonstrated that season strongly influences the Az–CJF EO quantitative composition and thus its bioactivity, aiding in the selection of the most high-quality raw materials for use in Azorean C. japonica EO aromatherapy industry.