2015
DOI: 10.1002/joc.4394
|View full text |Cite
|
Sign up to set email alerts
|

Climatic gradients along the windward slopes of Mount Kenya and their implication for crop risks. Part 2: crop sensitivity

Abstract: Mount Kenya is an equatorial mountain whose climatic setting is fairly simple (two rainy seasons in March-May, the Long Rains, and October-December, the Short Rains) though concealing significant spatial variations related to elevation and aspect (part I, Camberlin et al., 2014). This part II is dedicated to the sensitivity of sorghum yields to climate variability in space and time, with a focus on the intra-seasonal characteristics of the rainy seasons. To that aim we use the crop model SARRA-H calibrated for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 36 publications
0
1
0
1
Order By: Relevance
“…It is interesting that seasonal forecasts have been found to show skill and usefulness in Meru (Recha et al, 2012). Similar to Laikipia and Machakos, farmers' perceptions have led to utilization of onset dates in planning planting times and choices of seeds to plant by farmers in Meru County (Philippon et al, 2016). Another perception influencing decisions in Meru regards farmers' combining forecasts and other agricultural and market information in managing climate risks (Percy, 2013).…”
Section: Barriers To the Use Uptake And Adoption Of Weather And Climate Information By Farmersmentioning
confidence: 99%
“…It is interesting that seasonal forecasts have been found to show skill and usefulness in Meru (Recha et al, 2012). Similar to Laikipia and Machakos, farmers' perceptions have led to utilization of onset dates in planning planting times and choices of seeds to plant by farmers in Meru County (Philippon et al, 2016). Another perception influencing decisions in Meru regards farmers' combining forecasts and other agricultural and market information in managing climate risks (Percy, 2013).…”
Section: Barriers To the Use Uptake And Adoption Of Weather And Climate Information By Farmersmentioning
confidence: 99%
“…On peut citer pour exemple, les hydrologues pour qui les précipitations quotidiennes sont nécessaires en entrée des modèles de pluie-débit (Obled et al, 2009), les climatologues qui les utilisent dans l'étude des sécheresses (Usman et Reason, 2004 ;Gitau, 2011 ;Gitau et al, 2012). C'est aussi le cas en agronomie où les pluies représentent la variable d'entrée majeure dans les modèles de croissance de plantes (Baron et al, 2005 ;Traoré et al, 2011) et les modèles statistiques empiriques (Schlenker et Lobell, 2010) dont l'objectif est la compréhension et la prévision de l'évolution des rendements céréaliers par exemple (Ramarohetra et al, 2012 ;Philippon et al, 2015a). Si les jeux de données globaux en points de grille fournissent des séries complètes, leurs résolutions spatiales et temporelles (au mieux 0,5° en latitude et longitude et au pas de temps mensuel pour les données du Climatic Research Unit par exemple) les rendent inadéquats pour analyser les caractéristiques intrasaisonnières des pluies en zone de forts gradients climatiques.…”
Section: Introductionunclassified