Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability. Methods We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery. Results SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions. Conclusions In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.
Background The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability. Methods We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery. Results SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions. Conclusions In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.
This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant–soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant–soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant–soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant–soil consortia.
Vegetation plays a vital role in connecting ecosystems and climate features. The biodiversity of vegetation is one of the most important features for evaluating ecosystems and it is becoming increasingly important with the threat of global warming. To clarify the effects of climate change on forest biodiversity in Northeast China, time-series NDVI data, meteorological data and land cover data from 2010 to 2021 were acquired, and the forest biodiversity of Northeast China was evaluated. The effect of climate change on forest biodiversity was analyzed, and the results indicated that the forest biodiversity features increased from west to east in Northeast China. There was also an increasing trend from 2010 to 2021, but the rate at which forest biodiversity was changing varied with different forest types of Northeast China, as different climatic factors had a different impact on forest biodiversity in different forest types. Average annual temperature, annual accumulated precipitation, CO2 fertilization and solar radiation were the main factors affecting forest biodiversity changing trends. This research indicated the potential impact of climate change on forest ecosystems, as it emphasized with evidence that climate change has a catalytic effect on forest biodiversity in Northeast China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.