The ribbon-like pine forests of North Kazakhstan represent the principal territorial intrazonal and azonal biotopes. Integrated bio-geographic studies of the pine forests’ status were performed in the Beskaragai and Chaldai Nature Reserves in the Pri-Irtysh River basin within, at present, the climate–change most susceptible transitional parkland-steppe zone of Central Asia, adjoining the West Siberian Lowland. The investigations followed the regional topographic gradient with a series of mapped sites characterizing the spatial relief patterns of the pristine forest distribution and the associated phytocenoses. The results revealed marked natural arboreal cover restoration differences between the geographically close upland and lowland forest ecosystems. The regional tree growth dynamics show the varying intensity of the pine seedlings’ succession, the tree stands’ biomass productivity and the environmental stability, weakened by the extreme continentality and progressing aridification along with adverse anthropogenic ecological impacts. The specific geomorphic, soil and hydrological conditions are the principal determining factors. The more vital plain and lowland pine forests host the floristically richer fescue-dominated communities compared to the more fragile and precipitation-poorer upland pine settings. The latter forest ecosystems display a higher vulnerability to the current climate change, generating tree drying, forest fires, and to modern human activities such as logging, herding and recreation. The research conclusions provide new insights on the natural ribbon-like pine forests’ sustainability and adaptation to the ongoing continental warming triggering fundamental environmental transformations in Central Asia’s parklands.