We are developing a combined digital mammography/3D ultrasound system to improve detection and/or characterization of breast lesions. Ultrasound scanning through a mammographic paddle could significantly reduce signal level, degrade beam focusing, and create reverberations. Thus, appropriate paddle choice is essential for accurate sonographic lesion detection and assessment with this system. In this study, we characterized ultrasound image quality through paddles of varying materials (lexan, polyurethane, TPX, mylar) and thicknesses (0.25-2.5 mm). Analytical experiments focused on lexan and TPX, which preliminary results demonstrated were most competitive. Spatial and contrast resolution, sidelobe and range lobe levels, contrast and signal strength were compared with no-paddle images. When the beamforming of the system was corrected to account for imaging through the paddle, the TPX 2.5 mm paddle performed the best. Test objects imaged through this paddle demonstrated ≤ 15% reduction in spatial resolution, ≤ 7.5 dB signal loss, ≤ 3 dB contrast loss, and range lobe levels ≥ 35 dB below signal maximum over 4 cm. TPX paddles < 2.5 mm could also be used with this system, depending on imaging goals. In 10 human subjects with cysts, small CNR losses were observed but were determined to be statistically insignificant. Radiologists concluded that 75% of cysts in through-paddle scans were at least as detectable as in their corresponding directcontact scans.