Pleiotrophin (PTN) is an 18-kDa heparinbinding secretory growth/differentiation factor for different cell types. Its gene is differentially expressed in both mesenchyme and central nervous system during development and highly expressed in a number of different human tumors. Recently, a PTN mutant was found to act as a dominantnegative effector of PTN signaling. We have now used homologous recombination to introduce the dominant-negative PTN mutant into embryonic stem cells to generate chimeric mice. All highly chimeric male mice with germinal epithelium exclusively derived from embryonic stem cells with the heterologous PTN mutation were sterile. Their testes were uniformly atrophic, and the spermatocytes were strikingly apoptotic at all stages of development. The results support a central role of PTN signaling in normal spermatogenesis and suggest that interruption of PTN signaling may lead to sterility in males.