2017
DOI: 10.14341/probl201662620-27
|View full text |Cite
|
Sign up to set email alerts
|

Clinical and molecular genetic characteristics of MODY cases with digenic and oligogenic inheritance as defined by targeted next-generation sequencing

Abstract: The diagnosis of MODY should be verified by molecular genetic analysis. Recently the introduction of next-generation sequencing, allowing simultaneous analysis of several candidate genes, greatly facilitates the diagnosis of monogenic diseases including MODY. In addition, the simultaneous analysis of several candidate genes allows to identify cases with digenic and oligogenic inheritance. In this work we present the first description of MODY cases with digenic and oligogenic inheritance in our country.Aim — to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…epistasis, oligogenic inheritance) dedicated to understanding the effect of one gene/allele on the phenotypic expression of a second gene/allele ( 154 , 155 ). In the case of diabetes, there is a growing body of evidence that some subtypes may be the result of oligogenic inheritance, wherein the underlying etiology of the disorder is primarily genetic, but still requires the synergistic action of several genetic modifiers at disparate disease-linked loci ( 156 , 170 , 171 ). In this continuum between classical Mendelian and complex traits, possible protein coding disease modifiers include allelic heterogeneity that results from mutations within disease-linked loci, the activity of modifier genes that regulate others with important roles in glucose homeostasis, and the presence/absence of single nucleotide polymorphisms (SNPs) that are either necessary or sufficient to change the presence, penetrance, expressivity/heritability, or rate of progression of a disease.…”
Section: Genetic Disease Modifiers and Diabetesmentioning
confidence: 99%
“…epistasis, oligogenic inheritance) dedicated to understanding the effect of one gene/allele on the phenotypic expression of a second gene/allele ( 154 , 155 ). In the case of diabetes, there is a growing body of evidence that some subtypes may be the result of oligogenic inheritance, wherein the underlying etiology of the disorder is primarily genetic, but still requires the synergistic action of several genetic modifiers at disparate disease-linked loci ( 156 , 170 , 171 ). In this continuum between classical Mendelian and complex traits, possible protein coding disease modifiers include allelic heterogeneity that results from mutations within disease-linked loci, the activity of modifier genes that regulate others with important roles in glucose homeostasis, and the presence/absence of single nucleotide polymorphisms (SNPs) that are either necessary or sufficient to change the presence, penetrance, expressivity/heritability, or rate of progression of a disease.…”
Section: Genetic Disease Modifiers and Diabetesmentioning
confidence: 99%