“…It is of a rather serious current concern that in association with SARS-CoV-2 infection, there are emerging case reports of COVID-19 patients developing PrD and/or are experiencing an acceleration or exacerbation in the development or propagation of this pre-existing, fatal, preclinical and/or already-established, age-dependent neurodegenerative disorder [ 48 , 53 , 56 ]. A number of interesting and fascinating associations have recently been made between SARS-CoV-2 infection, prion neurobiology, and PrD: (i) both SARS-CoV-2-mediated neurological complications and PrDs represent variably transmissible, pro-inflammatory diseases of the brain and CNS, involve a significant disruption in cytokine signaling patterns that is sometimes referred to as the cytokine storm syndrome , and are neurodegenerative, consistently neuro-disruptive, and/or lethal neurological disorders [ 58 , 59 ]; (ii) several recent reports link multiple aspects of the ‘S1’ spike protein structure and function, immunology, and epidemiology with PrD, prion-like spread, and prion neurobiology [ 44 , 48 , 60 , 61 ]; (iii) ‘S1’ spike proteins contain self-associating ‘prion-like’ domains [ 43 , 44 , 48 ]; (iv) ‘S1’ spike proteins are either bound to the SARS-CoV-2 lipoprotein envelope or are in free monomeric form and these domains also appear to play a role in systemic amyloidogenesis in aggregate ‘seeding’ and/or ‘spreading’, which in turn supports systemic inflammation and the formation of pathogenic pro-inflammatory lesions in the brain and CNS that sustain pro-inflammatory neurodegeneration, neuronal cell death, and/or PrD-type change [ 3 , 44 , 48 , 59 , 60 ]; (v) the SARS-CoV-2 ‘S1’ spike protein binds to aggregation-prone glycosaminoglycan heparin and heparin binding protein (HBP), amyloid-beta (Aβ) peptides, α-synuclein, tau and prion proteins, and TDP-43 (TAR DNA binding protein 43, critical for the regulation of the viral gene expression), thus facilitating and/or accelerating the coalescence and aggregation of multiple pathological amyloidogenic proteins in nervous tissues, all of which appear to further contribute to the protein-mis-folding characteristic of PrD infection [ 3 , 20 , 22 , 49 , 60 ]; and (vi) variations in the prion-like domains of the ‘S1’ spike protein differ among SARS-CoV-2 variants, thus modulating ‘S1’ affinity for the ACE2R and hence the success of SARS-CoV-2 infectivity [ …”