The outbreak of COVID-19 epidemic has enabled the establishment and application of various rapid detection methods. It is particularly important to establish a fast and accurate detection method for enterovirus, which will be beneficial for clinical diagnosis, epidemic prevention and control, and timely traceability. Through establishing an ultra-fast reverse transcription-polymerase chain reaction (RT-PCR) equipment, this study aimed to evaluate the sensitivity and specificity of the testing method of enterovirus nucleic acids based on ultra-fast real-time fluorescence RT-PCR technology. A total of 61 cases were sampled, which were then transported and preserved. After the nucleic acid extraction, the nucleic acids of the same sample were tested with the enterovirus nucleic acid detection kit produced by Guangzhou Da An Gene Company and the ultra-fast RT-PCR equipment system established in this study. ABI7500Fast and Ahram biosystems S1 fast equipment were used for amplification detection. If the sample had an S-shaped amplification curve in the FAM channel and the Ct value ≤40.00, the result was positive. The sensitivity, precision, and accuracy of the detection method were then verified. This study established a novel testing method to achieve enterovirus nucleic acid detection within 24 min. The sensitivity detection limit of the method was 1.0 × 10 2 copies/ml. The coefficients of variation for repeated detection of the high, medium, and low concentration samples were 2.644%, 1.674%, and 4.281%, respectively, with good detection repeatability. In addition, a total of 29 cases were positive by the ultra-fast RT-PCR detection method in 61 suspected samples, which was consistent with the conventional fluorescent RT-PCR method. The established rapid detection method can greatly shorten the time for providing a detection report, which may greatly improve the efficiency of diagnosis and treatment.