Conventional randomized controlled trials (RCTs) can be expensive, time intensive, and complex to conduct. Trial recruitment, participation, and data collection can burden participants and research personnel. In the past two decades, there have been rapid technological advances and an exponential growth in digitized healthcare data. Embedding RCTs, including cardiovascular outcome trials, into electronic health record systems or registries may streamline screening, consent, randomization, follow-up visits, and outcome adjudication. Moreover, wearable sensors (i.e. health and fitness trackers) provide an opportunity to collect data on cardiovascular health and risk factors in unprecedented detail and scale, while growing internet connectivity supports the collection of patient-reported outcomes. There is a pressing need to develop robust mechanisms that facilitate data capture from diverse databases and guidance to standardize data definitions. Importantly, the data collection infrastructure should be reusable to support multiple cardiovascular RCTs over time. Systems, processes, and policies will need to have sufficient flexibility to allow interoperability between different sources of data acquisition. Clinical research guidelines, ethics oversight, and regulatory requirements also need to evolve. This review highlights recent progress towards the use of routinely generated data to conduct RCTs and discusses potential solutions for ongoing barriers. There is a particular focus on methods to utilize routinely generated data for trials while complying with regional data protection laws. The discussion is supported with examples of cardiovascular outcome trials that have successfully leveraged the electronic health record, web-enabled devices or administrative databases to conduct randomized trials.