ObjectiveWith the increased complexity and uncertainty in drug information, issuing medical prescriptions has become a vexing issue. As many as 240,000 medicines are available on the market, so this paper proposes a novel approach to the issuing of medical prescriptions. The proposed process will provide general practitioners (GPs) with medication advice and suggest a range of medicines for specific medical conditions by taking into consideration the collective pattern as well as the individual preferences of physicians' prescription decisions.
Methods and MaterialA hybrid approach is described that uses a combination of case-based reasoning (CBR) and Bayesian reasoning. In the CBR process, all the previous knowledge retrieved via similarity measures is made available for the reference of physicians as to what medicines have been prescribed (to a particular patient) in the past. After obtaining the results from CBR, Bayesian reasoning is then applied to model the prescription experience of all physicians within the organization. By comparing the two sets of results, more refined recommendations on a range of medicines are suggested along with the ranking for each recommendation.
ResultsTo validate the proposed approach, a Hong Kong medical center was selected as a testing site. Through application of the hybrid approach in the medical center for a period of one month, the results demonstrated that the approach produced satisfactory performance in terms of user satisfaction, ease of use, flexibility and effectiveness. In addition, the proposed approach yields better results and a faster learning rate than This is the Pre-Published Version. 2 when either CBR or Bayesian reasoning are applied alone.
ConclusionEven with the help of a decision support system, the current approach to anticipating what drugs are to be prescribed is not flexible enough to cater for individual preferences of GPs, and provides little support for managing complex and dynamic changes in drug information. Therefore, with the increase in the amount of information about drugs, it is extremely difficult for physicians to write a good prescription. By integrating CBR and Bayesian reasoning, the general practitioners' prescription practices can be retrieved and compared with the collective prescription experience as modeled by probabilistic reasoning. As a result, physicians can select the drugs which are supported by informed evidential decisions. That is, they can take into consideration the pattern of decisions made by other physicians in similar cases.