Background and Objectives: Although cryogen spray cooling (CSC) in conjunction with laser therapy has become the clinical standard for treatment of port wine stain (PWS) birthmarks, the current approach does not produce complete lesion blanching in the vast majority of patients. The objectives of this study are to: (1) experimentally determine the dynamic CSC heat flux when a skin phantom is preheated, and (2) numerically study the feasibility of using skin preheating prior to CSC to improve PWS laser therapeutic outcome. Study Design/Materials and Methods: A fast-response thin-foil thermocouple was used to measure the surface temperature and thus heat flux of an epoxy skin phantom during CSC. Using the heat flux as a boundary condition, PWS laser therapy was simulated with finite element heat diffusion and Monte Carlo light distribution models. Epidermal and PWS blood vessel thermal damage were calculated with an Arrhenius-type kinetic model. Results: Experimental results show that the skin phantom surface can be cooled to a similar minimum temperature regardless of the initial temperature. Numerical simulation indicates that upon laser irradiation, the epidermal temperature increase is virtually unaffected by preheating, while higher PWS blood vessel temperatures can be achieved. Based on the damage criterion we assumed, the depth and maximum diameter of PWS vessels that can be destroyed irreversibly with skin preheating are greater than those without. Conclusions: Skin preheating prior to CSC can maintain epidermal cooling while increasing PWS blood vessel temperature before laser irradiation. Numerical models have been developed to show that patients may benefit from the skin preheating approach, depending on PWS vessel diameter and depth.