Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed formulations are relevant characteristics during the operative management of pulpal exposure, aiming to optimise the work time and improve cross-infection/asepsis control. Additionally, clinical success seems to be greatly dependent on the biological performance of the materials that directly contact the living pulp. As such, this work approaches an integrative biological characterisation (i.e., antibacterial, irritation, and cytocompatibility assays) of three fast-setting CSCs—BiodentineTM, TotalFill® BC RRM™ Fast Putty, and Theracal LC®. These cements, after setting for 24 h, presented the expected topography and elemental composition (assessed by scanning electron microscopy, coupled with EDS analysis), in accordance with the information of the manufacturer. The set cements displayed a significant and similar antibiofilm activity against S. mutans, in a direct contact assay. Twenty-four-hour eluates were not irritant in the standardised CAM assay, but elicited distinct dose- and time-dependent cytotoxicity profiles on fibroblastic cells—i.e., Biodentine was devoid of toxicity, TotalFill presented a slight dose-dependent initial toxicity that was easily overcome, and Theracal LC was deleterious at high concentrations. When compared to long-setting ProRoot MTA cement, which highlighted the pursued integrative approach, Biodentine presented a similar profile, but TotalFill and Theracal LC displayed a poorer performance regarding antibiofilm activity/cytocompatibility features, and Theracal LC suggested eventual safety concerns.