Quantitation of cytomegalovirus (CMV) DNA load in specimens other than blood such as bronchoalveolar lavages, intestinal biopsies, or urine has become a common practice as an ancillary tool for the diagnosis of CMV pneumonitis, intestinal disease, or congenital infection, respectively. Nevertheless, most commercially available CMV PCR platforms have not been validated for CMV DNA detection in these specimen types. In this study, a laboratory-developed test based on Alinity m CMV (“Alinity LDT”) was evaluated. Reproducibility assessment using spiked bronchial aspirate (BAS) or urine samples showed low standard deviations of 0.08 and 0.27 Log IU/mL, respectively. Evaluating the clinical performance of Alinity LDT in comparison to a laboratory-developed test based on RealTi
m
e CMV (“RealTi
m
e LDT”) showed good concordance across 200 clinical specimens including respiratory specimens, intestinal biopsies, urine, and stool. A high Pearson's correlation coefficient of r = 0.92, a low mean bias of −0.12 Log IU/mL, a good qualitative agreement of 90%, and a Cohen's kappa value of 0.76 (substantial agreement) were observed. In separate analyses of the sample types BAS, tracheal aspirates, bronchoalveolar lavage, biopsies, and urine, the assay results correlated well between the two platforms with r values between 0.88 and 0.99 and a bias <0.5 Log IU/mL. Overall, the fully automated, continuous, random access Alinity LDT yielded good reproducibility, high concordance, and good correlation to RealTi
m
e LDT in respiratory, gastrointestinal, and urine samples and may enhance patient management with rapid result reporting.
IMPORTANCE
In transplant recipients, a major cause for morbidity and mortality is end-organ disease by primary or secondary CMV infection of the respiratory or gastrointestinal tract. In addition, sensorineural hearing loss and neurodevelopmental abnormalities are frequent sequelae of congenital CMV infections in newborns. Standard of care for highly sensitive detection and quantitation of the CMV DNA load in plasma and whole blood specimens is real-time PCR testing. Beyond that, there is a need for quantitative determination of CMV DNA levels in respiratory, gastrointestinal, and urinary tract specimens using a highly automated, random access CMV PCR assay with a short turnaround time to enable early diagnosis and treatment. In the present study, clinical performance of the fully automated Alinity m analyzer in comparison to the current RealTi
m
e LDT assay was evaluated in eight different off-label sample types.