BackgroundMortality rates associated with acute kidney injury (AKI) vary among critically ill patients. Outcomes are often not corrected for severity or duration of AKI. Our objective was to analyse whether a new variable, AKI burden, would outperform 1) presence of AKI, 2) highest AKI stage, or 3) AKI duration in predicting 90-day mortality.MethodsKidney Diseases: Improving Global Outcomes (KDIGO) criteria using creatinine, urine output and renal replacement therapy were used to diagnose AKI. AKI burden was defined as AKI stage multiplied with the number of days that each stage was present (maximum five), divided by the maximum possible score yielding a proportion. The AKI burden as a predictor of 90-day mortality was assessed in two independent cohorts (Finnish Acute Kidney Injury, FINNAKI and Simple Intensive Care Studies I, SICS-I) by comparing four multivariate logistic regression models that respectively incorporated either the presence of AKI, the highest AKI stage, the duration of AKI, or the AKI burden.ResultsIn the FINNAKI cohort 1096 of 2809 patients (39%) had AKI and 90-day mortality of the cohort was 23%. Median AKI burden was 0.17 (IQR 0.07–0.50), 1.0 being the maximum. The model including AKI burden (area under the receiver operator curve (AUROC) 0.78, 0.76–0.80) outperformed the models using AKI presence (AUROC 0.77, 0.75–0.79, p = 0.026) or AKI severity (AUROC 0.77, 0.75–0.79, p = 0.012), but not AKI duration (AUROC 0.77, 0.75–0.79, p = 0.06). In the SICS-I, 603 of 1075 patients (56%) had AKI and 90-day mortality was 28%. Median AKI burden was 0.19 (IQR 0.08–0.46). The model using AKI burden performed better (AUROC 0.77, 0.74–0.80) than the models using AKI presence (AUROC 0.75, 0.71–0.78, p = 0.001), AKI severity (AUROC 0.76, 0.72–0.79. p = 0.008) or AKI duration (AUROC 0.76, 0.73–0.79, p = 0.009).ConclusionAKI burden, which appreciates both severity and duration of AKI, was superior to using only presence or the highest stage of AKI in predicting 90-day mortality. Using AKI burden or other more granular methods may be helpful in future epidemiological studies of AKI.