Due to the occurrence of plastic impaction in ruminants and its deleterious effects on health and production, it is necessary to determine the suitability of biodegradable polymers to replace polyethylene-based agricultural plastics, such as hay netting. The objectives of this study were to evaluate the clearance of a polyhydroxyalkanoate (PHA) and poly(butylene succinate-co-adipate) (PBSA) melt-blend polymer from the rumen when fed to cattle and subsequent animal health. Twelve Holstein bull calves were dosed with an encapsulated 13.6 g of PBSA:PHA (Blend), 13.6 g of low-density polyethylene (LDPE), or four empty gelatin capsules (Control) for 30 d. The feed intake, body weight, and body temperature were evaluated, and hemograms were run on d 0 and d 30. On d 31, calves were euthanized to evaluate gross rumen measurements and pathology, papillae length, and polymer residues in rumen contents. No calves presented any signs related to plastic impaction. The feed intake; body weight; rectal temperature; hematological parameters; gross rumen measurements and pathology; and rumen pH and temperature were not affected by treatments. Calves dosed with LDPE had 27 g of undegraded polymer retained in the rumen while Blend calves had only 2 g of fragmented polymers that were 10% of their original size. Agricultural plastics developed from PBSA:PHA may be a suitable alternative to LDPE-based products in the case of animal ingestion and may reduce the incidence of plastic impaction.