Our objective was to evaluate the brain regions showing increased and decreased metabolism in patients at the time of generalized bursts of epileptic discharges in order to understand their mechanism of generation and effect on brain function. By recording the electroencephalogram during the functional MRI, changes in the blood oxygenation level-dependent signal were obtained in response to epileptic discharges observed in the electroencephalogram of 15 patients with idiopathic generalized epilepsy. A group analysis was performed to determine the regions of positive (activation) and negative (deactivation) blood oxygenation leveldependent responses that were common to the patients. Activations were found bilaterally and symmetrically in the thalamus, mesial midfrontal region, insulae, and midline and bilateral cerebellum and on the borders of the lateral ventricles. Deactivations were bilateral and symmetrical in the anterior frontal and parietal regions and in the posterior cingulate gyri and were seen in the left posterior temporal region. Activations in thalamus and midfrontal regions confirm known involvement of these regions in the generation or spread of generalized epileptic discharges. Involvement of the insulae in generalized discharges had not previously been described. Cerebellar activation is not believed to reflect the generation of discharges. Deactivations in frontal and parietal regions remarkably followed the pattern of the default state of brain function. Thalamocortical activation and suspension of the default state may combine to cause the actual state of reduced responsiveness observed in patients during spike-and-wave discharges. This brief lapse of responsiveness may therefore not result only from the epileptic discharge but also from its effect on normal brain function.absence ͉ epilepsy ͉ thalamus T he electroencephalogram (EEG) of patients with epilepsy presents paroxysmal discharges that depend on the type of epilepsy. In epilepsy that has been termed ''idiopathic generalized'' according to the Commission on Classification and Terminology of the International League Against Epilepsy (1), the most common type of discharge is the 2-to 3-Hz spike-and-wave burst, which occurs simultaneously over wide cortical regions, most often with an anterior predominance. The origin of this discharge and of the absence seizures that often accompany spike-and-wave bursts when they last several seconds has been a subject of investigation and controversy for many years (see ref.2 for a review), particularly with respect to the involvement of subcortical structures. The recently developed method of combined EEG and functional magnetic resonance imaging (fMRI) (EEG͞fMRI) allows the investigation of the brain regions, cortical and subcortical, that are involved in metabolic changes as a result of epileptic discharges seen in the scalp EEG. In our recent publication (3), we described for each individual the patterns of increases and decreases in blood oxygenation leveldependent (BOLD) signal resulting from bu...