National Laboratory launched proton therapy.After experimentation with different kinds of particles, including neutrons, mesons, helium ions, and neon ions, the National Institute of Radiological Sciences in Japan started using carbon ions for cancer treatment. Proton therapy has the physical advantage of the Bragg peak, which can well realize the high-dose distribution in the tumor target volume and the low-dose distribution in surrounding normal tissue, so proton therapy has found wide applications in the field of ion radiotherapy. Nevertheless, the physical dose distribution and biological characteristics of carbon ions are significantly superior to those of other particles. Compared with the conventional photon radiotherapy, carbon ion radiotherapy stands out with its favorable radiophysical and biological advantages. 1 In the current clinical practice, heavy ion radiotherapy mainly refers to the carbon ion radiotherapy.So far, although some textbooks and publications have provided references for standardized applications of ion radiotherapy, there has not yet been any consensus to guide clinical practices. With the rapid development of ion radiotherapy in China, and the increase of proton and heavy ion therapy centers, ion radiotherapy, which serves as a promising radiotherapy technology, has been applicable to more and more indications. Nevertheless, there has not yet been a guideline to guide ion therapy clinical practices based on national circumstancesThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.