Myasthenia gravis (MG) is a chronic autoimmune disease of the nervous system, which is still incurable. In recent years, with the progress of immunosuppressive and supportive treatment, the therapeutic effect of MG in the acute stage is satisfactory, and the mortality rate has been greatly reduced. However, there is still no consensus on how to conduct long-term management of stable MG, such as guiding patients to identify relapses, practice exercise, return to work and school, etc. In the international consensus guidance for management of myasthenia gravis published by the Myasthenia Gravis Foundation of America (MGFA) in 2020, for the first time, “the role of physical training/exercise in MG” was identified as the topic of discussion. Finally, due to a lack of high-quality evidence on physical training/exercise in patients with MG, the topic was excluded after the literature review. Therefore, this paper reviewed the current status of MG rehabilitation research and the difficulties faced by stable MG patients in self-management. It is suggested that we should take advantage of artificial intelligence (AI) and leverage it to develop the data-driven decision support platforms for MG management which can be used for adverse event monitoring, disease education, chronic management, and a wide variety of data collection and analysis.