The aim of this study was to clarify the significance of DNA methylation alterations during lung
carcinogenesis. Infinium assay was performed using 139 paired samples of non-cancerous lung tissue
(N) and tumorous tissue (T) from a learning cohort of patients with lung adenocarcinomas (LADCs).
Fifty paired N and T samples from a validation cohort were also analyzed. DNA methylation
alterations on 1,928 probes occurred in N samples relative to normal lung tissue from patients
without primary lung tumors, and were inherited by, or strengthened in, T samples. Unsupervised
hierarchical clustering using DNA methylation levels in N samples on all 26,447 probes subclustered
patients into Cluster I (n = 32), Cluster II (n =
35) and Cluster III (n = 72). LADCs in Cluster I developed from the
inflammatory background in chronic obstructive pulmonary disease (COPD) in heavy smokers and were
locally invasive. Most patients in Cluster II were non-smokers and had a favorable outcome. LADCs in
Cluster III developed in light smokers were most aggressive (frequently showing lymphatic and blood
vessel invasion, lymph node metastasis and an advanced pathological stage), and had a poor outcome.
DNA methylation levels of hallmark genes for each cluster, such as IRX2, HOXD8, SPARCL1,
RGS5 and EI24, were again correlated with clinicopathological
characteristics in the validation cohort. DNA methylation profiles reflecting carcinogenetic factors
such as smoking and COPD appear to be established in non-cancerous lung tissue from patients with
LADCs and may determine the aggressiveness of tumors developing in individual patients, and thus
patient outcome.