Although epidural analgesia is widely used for pain relief, it is associated with a significant failure rate. Loss of resistance technique, tactile feedback from the needle, and surface landmarks are traditionally used to guide the epidural needle tip into the epidural space (EDS). The aim of this narrative review is to critically appraise new and emerging technologies for identification of EDS and their potential role in the future. The PubMed, Cochrane Central Register of Controlled Clinical Studies, and Web of Science databases were searched using predecided search strategies, yielding 1048 results. After careful review of abstracts and full texts, 42 articles were selected to be included. Newer techniques for localization of EDS can be broadly classified into techniques that (1) guide the needle to the EDS, (2) identify needle entry into the EDS, and (3) confirm catheter location in EDS. An ideal method should be easy to learn and perform, easily reproducible with high sensitivity and specificity, identifies inadvertent intrathecal and intravascular catheter placements with ease, feasible in perioperative setting and have a cost-benefit advantage. Though none of them in their current stages of development qualify as an ideal method, many show tremendous potential. Some techniques are useful in patients with difficult spinal anatomy and infants, and thus are complementary to traditional methods. In addition to improving the existing technology, future research should aim at proving the superiority of these techniques over traditional methods, specifically regarding successful EDS localization, better safety profile, and a favorable cost-benefit ratio.