Hemophagocytic syndrome (HPS) is frequently associated with hematopoietic stem cell transplantation and is treated with some benefit derived from TNF-α inhibitors. However, the mechanisms of how HPS occurs and how a TNF-α inhibitor exerts some benefit to HPS management have remained unclear. We evaluated the effect of toll-like receptor (TLR) ligands, especially focusing on cytosine-phosphorothionate-guanine oligodeoxynucleotide (CpG), a TLR9 ligand, on HPS in mice that underwent transplantation with syngeneic or allogeneic bone marrow (BM) cells (Syn-BMT, Allo-BMT), or with allogeneic BM cells plus splenocytes to promote graft-versus-host disease (GVHD mice). Hemophagocytosis was a common feature early after all BMT, but it subsided in Syn-BMT and Allo-BMT mice. In GVHD mice, however, hemophagocytosis persisted and was accompanied by upregulated production of IFN-γ but not TNF-α, and it was suppressed by blockade of IFN-γ but not TNF-α. A single injection of the TLR9 ligand CpG promoted HPS in all BMT mice and was lethal in GVHD mice, accompanied by greatly upregulated production of TNF-α, IL-6, and IFN-γ. Blocking of TNF-α, but not IL-6 or IFN-γ, suppressed CpG-induced HPS in all BMT mice and rescued GVHD mice from CpG-induced mortality. Thus, TLR9 signaling mediates TNF-α-driven HPS in BMT mice and is effectively treated through TNF-α inhibition.