diseases, to mention the main methods used to assess arrhythmia risk, as well as to elucidate their relation to long-term outcome. Dyslipidemia, obesity, diabetes mellitus, liver, hematologic, neurologic and psychiatric disorders, are discussed.
Dyslipidaemia and ventricular arrhythmia riskElevated LDL cholesterol was associated with all manifestations of coronary artery disease including sudden cardiac death [7]. Hypercholesterolemia is not only atherogenic, but is also associated with autonomic imbalance, alteration of the contractile properties of the myocardium, increased oxidative stress and ventricular electrophysiological remodeling [8,9]. Myocardial electrical remodeling due to hypercholesterolemia caused prolonged action potential durations, longer QTc (heart rate corrected QT interval durations), conduction slowing and increased repolarization dispersion [9,10].Several clinical and autopsy studies demonstrated an association between elevated cholesterol levels and sudden cardiac death [11,12]. Gualdiero et al. reported a positive correlation between cholesterol level, QT dispersion and premature ventricular contractions in patients with isolated hypercholesterolemia, and normalization of serum cholesterol and QT dispersion and improvement of ventricular ectopic activity, with simvastatin [13]. Szabo et al. found significant correlations of QT interval duration and QT dispersion with total and LDL cholesterol, triglycerides and apoplipoprotein B, respectively, in patients with type IIb hyperlipoproteinemia, without myocardial ischemia, suggesting a direct effect of hyperlipidemia on ventricular repolarization [14]. LDL increases the cholesterol to phospholipid ratio in the cell membrane, enhancing membrane rigidity and impairing functionality of the ion channels and ventricular repolarization [14,15]. Ventricular repolarization is reflected by the QT interval on the ECG, which is regulated mainly by potassium channels. On the other hand, type II hyperlipoproteinemia is characterized by accelerated atherosclerosis, related to small dense LDL synthesis.It was also hypothesized that hypercholesterolemia causes repolarization abnormalities, probably, by beta or IK channel phosphorylation mediated mechanisms [9]. Hypercholesterolemia causes also endothelial dysfunction, with impaired microvascular vasodilatation, facilitating vasoconstriction, and electrical heterogeneity and extrasystolic activity [13]. The increase in the QT interval duration in cholesterol fed rabbits was lesser if L-Arginine was supplemented, suggesting a beneficial role of L-Arginine (a nitric acid precusror) in hypercholesterolemia induced repolarization characteristics [9]. L-Arginine increases endogenous nitric oxide, which may activate ATP dependent K channels, shortening the action potential [9].Late ventricular potentials were detected in patients with high and moderately elevated serum cholesterol [5,16].Cardiac Arrhythmias -Mechanisms, Pathophysiology, and Treatment 90