BackgroundRecent studies have shown that the triglyceride glucose index (TyG) and cystatin C (CysC) are closely related to cardiovascular disease, but there is limited research on the prognosis of patients with acute coronary syndrome (ACS) after percutaneous coronary intervention (PCI). The aim of this study was to explore the predictive value of the combination of the TyG index and CysC in predicting major adverse cardiovascular events (MACEs) in ACS patients who underwent PCI.MethodsThis retrospective study included 319 ACS patients who underwent PCI. The clinical endpoint was the occurrence of MACEs, including all-cause mortality, heart failure, non-fatal myocardial infarction, target vessel revascularization, and angina requiring hospitalization. Patients were classified into MACEs (65 cases) and non-MACEs (254 cases) groups. Univariate factor and multivariate analysis were used to identify predictors of MACEs. The receiver operating curve (ROC) of the prediction model of MACEs was determined. Additionally, the net reclassification improvement and integrated discrimination improvement indexes were calculated to further assess the additional predictive value of the risk factors for MACEs. Subgroup and interaction analysis between the TyG index combined with CysC and MACEs were conducted in various subgroups. Patients were stratified according to the optimal cutoff point value of the TyG index and the CysC determined by ROC curve analysis. The Kaplan–Meier analysis method was used to construct a survival curve 1 year after PCI.ResultsDuring a median follow-up period of 14 months, 65 (20.38%) patients had experienced at least one primary endpoint event. Multivariate logistic regression analysis indicated that the TyG index and CysC were independently associated with an increased risk of MACEs after PCI (OR, 2.513, 95% CI 1.451–4.351, P= 0.001; and OR, 4.741, 95% CI 1.344–16.731, P=0.016, respectively). The addition of the TyG index and CysC to the baseline risk model had the strongest incremental effect for predicting MACEs in terms of the C-statistic from 0.789 (95% CI 0.723–0.855, P<0.001) to 0.799 (95% CI 0.733–0.865, P<0.001). Furthermore, Kaplan–Meier analysis demonstrated that a TyG index greater than 9.325 and a CysC value greater than 1.065 mg/ml were significantly associated with an increased risk of MACEs (log‐rank, all P < 0.01).ConclusionThe TyG index predicts MACEs after PCI in patients with ASC independent of known cardiovascular risk factors. Adjustment of the CysC by the TyG index further improves the predictive ability for MACEs in patients with ACS undergoing PCI. Thus, both of them are expected to become new prognostic indicators for MACEs in patients with ACS after PCI.