2021
DOI: 10.1007/s11548-021-02441-x
|View full text |Cite
|
Sign up to set email alerts
|

ClipAssistNet: bringing real-time safety feedback to operating rooms

Abstract: Purpose Cholecystectomy is one of the most common laparoscopic procedures. A critical phase of laparoscopic cholecystectomy consists in clipping the cystic duct and artery before cutting them. Surgeons can improve the clipping safety by ensuring full visibility of the clipper, while enclosing the artery or the duct with the clip applier jaws. This can prevent unintentional interaction with neighboring tissues or clip misplacement. In this article, we present a novel real-time feedback to ensure s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
3

Year Published

2022
2022
2023
2023

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(12 citation statements)
references
References 35 publications
0
9
0
3
Order By: Relevance
“…While automated confirmation of the CVS can provide the surgeon with additional assurance of anatomy, other CV tools can ensure that clips are well placed, and no other structures are inadvertently being clipped. To provide such assistance, Aspart et al recently proposed ClipAssistNet, a neural network trained to detect the tips of a clip applier during LC 46 . If experienced surgeons may find such assistance unnecessary and even trivial, trainees and early career surgeons may benefit from the reassurance that can be provided by real-time decision-support algorithms such as GoNoGoNet, DeepCVS, and ClipAssistNet.…”
Section: Computer Vision For Laparoscopic Cholecystectomymentioning
confidence: 99%
“…While automated confirmation of the CVS can provide the surgeon with additional assurance of anatomy, other CV tools can ensure that clips are well placed, and no other structures are inadvertently being clipped. To provide such assistance, Aspart et al recently proposed ClipAssistNet, a neural network trained to detect the tips of a clip applier during LC 46 . If experienced surgeons may find such assistance unnecessary and even trivial, trainees and early career surgeons may benefit from the reassurance that can be provided by real-time decision-support algorithms such as GoNoGoNet, DeepCVS, and ClipAssistNet.…”
Section: Computer Vision For Laparoscopic Cholecystectomymentioning
confidence: 99%
“…Kürzlich zeigte eine internationale Studie außerdem, dass KI und maschinelles Lernen eine große Hilfestellung bei der Laparoskopie bieten könnten. "ClipAssist-Net" wurde hier als Echtzeit-Feedback-Mechanismus vorgestellt [16]. Das Programm kann während laparoskopischer Cholezystektomien erkennen, ob der Clip vor Absetzen des Gallengangs unter Sicht gesetzt wurde.…”
Section: Künstliche Intelligenz Und Maschinelles Lernen Im Perioperat...unclassified
“…Das Programm kann während laparoskopischer Cholezystektomien erkennen, ob der Clip vor Absetzen des Gallengangs unter Sicht gesetzt wurde. Waren die Branchenenden der Clipzange nicht sichtbar, so konnte das Programm den Chirurgen darauf hinweisen [16].…”
Section: Künstliche Intelligenz Und Maschinelles Lernen Im Perioperat...unclassified
See 1 more Smart Citation
“…Another line of research has instead focused on exclusively exploiting live surgical videos from endoscopic cameras to classify surgical activity 16 , gestures 17,18 , and skills 19 , among other tasks [20][21][22] . Most recently, attention-based neural networks such as Transformers 23 have been used to distinguish between distinct surgical steps within a procedure [24][25][26][27] .…”
Section: Introductionmentioning
confidence: 99%