“…7). The ML models have been compared with several conventional non-ML models: regression model [14,80,101,159,160], brute force approach [143], traditional statistical approaches [60,94,[161][162][163][164], classical KF [129], Bayes-optimal rule [118], least square (LS)-based approach [40], Saastamoinen model [110], autoregressive model and a traditional LEO propagation model (EKF-STAN) [146], conventional wind speed retrieval method [43], Maximum-Likelihood Power-Distortion (PD-ML) [165], BERNESE 5.2 [114], CYGNSS [44], Hydrostaticseasonal-time (HST) model [49], Statistical Theta method [51][52][53]166], MAPGEO2004 geoid model [73], GNSS-IR soil moisture [58], Autoregressive (AR) and Autoregressive Moving Average (ARMA) [167], ERA-Interima global atmospheric reanalysis (now ERA5 reanalysis) [107], Empirical linear algorithms (LRM and LLM) [59], International Reference Ionosphere (IRI) 2016 model [168], NeQuick and IRI-2001 global TEC model [169][170][171], EKF-based integration scheme [172], CODE GIMs (Global Ionospheric Maps) [173], autoregressive integrated moving average (ARIMA), and quadratic polynomial (QP) models [174], least square regression algorithms (LSR) and bi-ha...…”