2020
DOI: 10.1109/tcsi.2019.2948944
|View full text |Cite
|
Sign up to set email alerts
|

Clock-Voltage Co-Regulator With Adaptive Power Budget Tracking for Robust Near-Threshold-Voltage Sequential Logic Circuits

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 20 publications
0
2
0
Order By: Relevance
“…The impact of the PVT variations in CMOS circuits increase with the technology scaling, making reliability among the most important challenges facing nanoscale system design. Adaptive solutions have been proposed to minimize the performance lost due to PVT variations, allowing systems to tolerate worst-case scenarios by reducing the delay and power impact under normal operation [1][2][3][4][5][6][7][8]. For adaptive methodologies, voltage, frequency, current, power, and activity monitors are used to control the circuit behavior or performance [9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…The impact of the PVT variations in CMOS circuits increase with the technology scaling, making reliability among the most important challenges facing nanoscale system design. Adaptive solutions have been proposed to minimize the performance lost due to PVT variations, allowing systems to tolerate worst-case scenarios by reducing the delay and power impact under normal operation [1][2][3][4][5][6][7][8]. For adaptive methodologies, voltage, frequency, current, power, and activity monitors are used to control the circuit behavior or performance [9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…3828-3838Tang, L., see Zhang, X., TCSI July 2020 2397-2408 Tang, L., see Wu, C., 5624-5635+ Check author entry for coauthors Tang, N., seeNguyen, B., TCSI Feb. 2020 622-633 Tang, N., see Hong, W., TCSI Sept. 2020 3234-3247 Tang, W.K.S., see Bi, X., TCSI April 2020 1309-1318 Tang, W.K.S., see Han, Z., TCSI Oct. 2020 3553-3561 Tang, X., Nguyen, J., Medra, A., Khalaf, K., Visweswaran, A., Debaillie, B., and Wambacq, P., Design of D-Band Transformer-Based Gain-Boosting Class-AB Power Amplifiers in Silicon Technologies; TCSI May 2020 1447-1458 Tang, Y., see Zhang, W., TCSI Jan. 2020 259-270 Tang, Y., Jia, H., and Verma, N., Reducing Energy of Approximate Feature Extraction in Heterogeneous Architectures for Sensor Inference via Energy-Aware Genetic Programming; TCSI May 2020 1576-1587 Tannirkulam Chandrasekaran, S., see Jayaraj, A., TCSI April 2020 1149-1157 Tannirkulam Chandrasekaran, S., Kapoor, G., and Sanyal, A., 8fJ/Step Bandpass ADC With Digitally Assisted NTF Re-Configuration; TCSI Oct. 2020 3262-3272 Tapen, T., Yuksel, H., Boynton, Z., Apsel, A., and Molnar, A., An Integrated, Software-Defined FDD Transceiver: Distributed Duplexing Theory and Operation; TCSI Jan. 2020 271-283 Tasoulas, Z., and Anagnostopoulos, I., Kernel-Based Resource Allocation for Improving GPU Throughput While Minimizing the Activity Divergence of SMs; TCSI Feb. 2020 428-440 Tasoulas, Z., Zervakis, G., Anagnostopoulos, I., Amrouch, H., and Henkel, J., Weight-Oriented Approximation for Energy-Efficient Neural Network Inference Accelerators; TCSI Dec. 2020 4670-4683 Teman, A., see Giterman, R., TCSI April 2020 1207-1217 Teman, A., see Noy, T., TCSI Dec. 2020 4804-4817 Temes, G.C., see Xu, Y., TCSI Feb.2020 600-610 Temes, G.C., see Tan, Z., TCSI Dec. 2020 4161-4173 Temes, G.C., see Kareppagoudr, M., TCSI Oct. 2020 3251-3261 Teo, J.H., Cheng, S., and Alioto, M., Low-Energy Voice Activity Detection via Energy-Quality Scaling From Data Conversion to Machine Learning; TCSI April 2020 1378-1388 Tetu, J., Trudeau, L., Van Beirendonck, M., Balatsoukas-Stimming, A., and Giard, P., A Standalone FPGA-Based Miner for Lyra2REv2 Cryptocurrencies; TCSI April 2020 1194-1206 Tetzlaff, R., see Ascoli, A., TCSI April 2020 1389-1401 Tetzlaff, R., Ascoli, A., Messaris, I., and Chua, L.O., Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomputing With Bistable-Like Memristors; TCSI Feb. 2020 502-515 Tetzlaff, R., see Ascoli, A., TCSI Aug. 2020 2753-2766 Thakur, C.S., see Zhang, J., TCSI June 2020 1803-1814 Tian, E., Wang, X., and Peng, C., Probabilistic-Constrained Distributed Filtering for a Class of Nonlinear Stochastic Systems Subject to Periodic DoS Attacks; TCSI Dec. 2020 5369-5379 Timarchi, S., see Mahdavi, H., TCSI July 2020 2297-2304 Todsen, J., see Liu, N., TCSI July 2020 2157-2168 Tokuda, T., see Rustami, E., TCSI April 2020 1082-1091 Tonnellier, T., see Ercan, F., TCSI Jan. 2020 322-335 Topa, M.D., see Raducan, C., TCSI Nov. 2020 3740-3752 Torikai, H., see Takeda, K., TCSI June 2020 1989-2001 Traferro, S., see Ding, M., TCSI July 2020 2263-2273 Trigui, A., Ali, M., Hached, S., David, J., Ammari, A.C., Savaria, Y., and Sawan, M., Generic Wireless Power Transfer and Data Communication System Based on a Novel Modulation Technique; TCSI Nov. 2020 3978-3990 Trinchero, R., see…”
mentioning
confidence: 99%