Background
In a proportion of patients with chronic lymphocytic leukemia (CLL), resistance to Bruton tyrosine kinase (BTK) inhibitors (BTKi) is attributed to acquired BTK/phospholipase C gamma 2 (PLCG2) mutations. However, knowledge regarding additional genetic lesions associated with BTK/PLCG2 mutations, and gene mutations in patients lacking BTK/PLCG2 mutations, is limited.
Methods
Using targeted deep sequencing, mutations in 29 genes associated with CLL and/or the BCR signaling pathway were assessed in patients with CLL who developed resistance to BTK inhibition with ibrutinib/acalabrutinib at a single institution.
Results
The study group included 29 patients with BTKi‐resistant CLL, 23 patients with disease progression, and 6 patients with Richter transformation (RT). The median times to disease progression and RT were 33.3 months and 13.3 months, respectively. In 11 patients, sequencing was possible at both baseline (prior to treatment with BTKi) and at time of disease progression/RT. Of these patients, 4 demonstrated BTK mutations at the time of disease progression/RT; patients without BTK mutations frequently acquired mutations associated with disease progression/RT in TP53, SF3B1, and CARD11, whereas additional mutations were rare in patients with BTK‐mutated CLL. Sequencing of all 29 patients at the time of disease progression/RT identified BTK mutations at a frequency of 66%, including a novel V537I mutation. Among patients with disease progression, BTK mutations were observed in 16 patients (70%). The median time to disease progression was shorter in patients without BTK mutations compared with those with BTK‐mutated CLL. Among patients with RT, SF3B1 mutations were more frequent than BTK mutations (67% vs 50%). Following BTKi discontinuation, we sequential mutation analysis was performed in 2 patients with RT and 3 patients with disease progression in the setting of persistent disease. Both patients with RT demonstrated disappearance of BTK and expansion of TP53 mutations. All 3 patients with disease progression received venetoclax and demonstrated suppression of BTK mutations.
Conclusions
Longitudinal, targeted, multigene deep sequencing is informative for the clinical monitoring of mutational evolution in patients with CLL who are receiving BTKi.