Most plants can reproduce both sexually and asexually (or vegetatively), and the balance between the two reproductive modes may vary widely between and within species. Extensive clonal growth may affect the evolution of life history traits in many ways. First, in some clonal species, sexual reproduction and sex ratio vary largely among populations. Variation in sexual reproduction may strongly affect plant's adaptation to local environments and the evolution of the geographic range. Second, clonal growth can increase floral display, and thus pollinator attraction, while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal. Geitonogamous pollination can bring a cost to plant fitness through both female and male functions. Some co-evolutionary interactions, therefore, may exist between the spatial structure and the mating behavior of clonal plants. Finally, a trade-off may exist between sexual reproduction and clonal growth. Resource allocation to the two reproductive modes may depend on environmental conditions, competitive dominance, life span, and genetic factors. If different reproductive modes represent adaptive strategies for plants in different environments, we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition, while clonal growth should be dominant in stable habitats. Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes. Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives.