Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are neurodevelopmental disorders of genomic imprinting. AS results from loss of function of the ubiquitin protein ligase E3A (UBE3A) gene, whereas the genetic defect in PWS is unknown. Although induced pluripotent stem cells (iPSCs) provide invaluable models of human disease, nuclear reprogramming could limit the usefulness of iPSCs from patients who have AS and PWS should the genomic imprint marks be disturbed by the epigenetic reprogramming process. Our iPSCs derived from patients with AS and PWS show no evidence of DNA methylation imprint erasure at the cis-acting PSW imprinting center. Importantly, we find that, as in normal brain, imprinting of UBE3A is established during neuronal differentiation of AS iPSCs, with the paternal UBE3A allele repressed concomitant with up-regulation of the UBE3A antisense transcript. These iPSC models of genomic imprinting disorders will facilitate investigation of the AS and PWS disease processes and allow study of the developmental timing and mechanism of UBE3A repression in human neurons.antisense transcript | epigenetic | neuronal differentiation A ngelman syndrome (AS) is a neurogenetic disorder characterized by profound intellectual disability, absent speech, frequent seizures, motor dysfunction, and a characteristic happy demeanor (1, 2). Prader-Willi syndrome (PWS) is characterized hyperphagia/obesity; small stature, hands, and feet; and behavioral problems that are likened to obsessive compulsive disorder (3). AS is caused by loss of function of the maternally inherited allele of the E3 ubiquitin ligase UBE3A. UBE3A is subject to tissuespecific genomic imprinting; although both alleles are expressed in most tissues, the paternally inherited allele is repressed in the brain (4-6). Imprinted expression of UBE3A is thought to occur as a result of reciprocal expression of a long noncoding antisense transcript, UBE3A-ATS, which is part of a >600-kb transcript initiating at the differentially methylated PWS imprinting center (IC) located in exon 1 of the SNURF-SNRPN gene (7-9). PWS is associated with the loss of several species of small nucleolar RNAs (snoRNAs) (10); however, its genetic basis is currently unknown, and there is no mouse model that recapitulates all features of PWS.Mouse models of AS have proved significant in studying important aspects of the AS disease mechanism. There are, however, differences in the tissue specificity of the transcript that harbors UBE3A-ATS between humans and mice (11), indicating that the timing and mechanism of UBE3A repression may diverge between these species. The ability to study the developmental timing and mechanism of brain-specific repression of the paternal UBE3A allele in a model of human development is critical for better understanding the AS disease process and for using live neurons from patients with AS to discover previously undescribed therapeutic interventions. Here, we have developed such a model via human induced pluripotent stem cell (iPSC)-technology.
ResultsHu...