Escherichia coli endonuclease III (EcoNth) plays an important cellular role by removing premutagenic pyrimidine damages produced by reactive oxygen species. EcoNth is a bifunctional enzyme that has DNA glycosylase and apurinic/apyrimidinic lyase activities. Using a phylogeny of natural sequences, we selected to study EcoNth serine 39, aspartate 44, and arginine 184, which are presumed to be in the vicinity of the damaged base in the glycosylasesubstrate complex. These three amino acids are highly conserved among Nth orthologs, although not among homologous glycosylases, such as MutY, that have different base specificities and no lyase activity. To examine the role of these amino acids in catalysis, we constructed three mutants of EcoNth, in which Ser 39 was replaced with leucine (S39L), Asp 44 was replaced with valine (D44V), and Arg 184 was replaced with alanine (R184A), which are the corresponding residues in EcoMutY. We showed that EcoNth S39L does not have significant glycosylase activity for oxidized pyrimidines, although it maintained AP lyase activity. In contrast, EcoNth D44V retained glycosylase activity against oxidized pyrimidines, but the apparent rate constant for the lyase activity of EcoNth D44V was significantly lower than that of EcoNth, indicating that Asp 44 in EcoNth is required for -elimination. Finally, EcoNth R184A maintained lyase activity but exhibited glycosylase specificity different from that of EcoNth. The functional consequences of each of these three substitutions can be rationalized in the context of high resolution protein structures. Thus phylogeny-based scanning mutagenesis has allowed us to identify novel roles for amino acids in the substrate binding pocket of EcoNth in base recognition and/or catalysis.Base excision repair evolved to protect cellular DNA against the deleterious effects of endogeneous metabolic processes and is highly conserved across species (for reviews, see Refs. 1-3). The initial step in the base excision repair pathway is the removal of a damaged pyrimidine or purine by cleavage of the N-glycosyl bond by a DNA glycosylase. The glycosylases that recognize oxidative damages also exhibit AP 2