The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.
INTRODUCTIONMyosins are actin-based motors known or hypothesized to play fundamental roles in many forms of eukaryotic motility such as cell crawling, cytokinesis, phagocytosis, growth cone extension, maintenance of cell shape, and organelle/particle trafficking. Although actin polymerization alone can drive some forms of motility, myosins appear to power an assortment of movements and are important in processes such as signal transduction (Bahler, 2000) and establishment of polarity (Yin et al., 2000). Recent evidence even implicates myosins in the polymerization of actin (Evangelista et al., 2000;Lechler et al., 2000;Lee et al., 2000). To understand the molecular basis of actin-based motility, it is thus critical to identify the pool of candidate motor proteins.Members of the myosin superfamily are defined by the presence of a heavy chain with a conserved Ïł80 kDa catalytic domain. In most myosins, the catalytic domain is followed by an âŁ-helical light chain-binding region consisting of one or more IQ motifs. Most myosins also have a Cterminal tail and/or an N-terminal extension thought to endow class-specific properties such as membrane binding or kinase activity. Class II myosins are familiar from studies of muscle contraction, but the myosin superfamily also contains a large number of other myosins with quite different tail domains. Although the conventional-unconventional dichotomy is clearly artificial in terms of structure and evolution, it is operationally useful because of the historical emphasis on...