ELO2 and ELO3 were identified from the Saccharomyces cerevisiae genome data base as homologues of ELO1, a gene involved in the elongation of the fatty acid 14:0 to 16:0. Mutations in these genes have previously been shown to produce pleiotropic effects involving a number of membrane functions. The simultaneous disruption of ELO2 and ELO3 has also been shown to produce synthetic lethality, indicating that they have related and/or overlapping functions. Gas chromatography and gas chromatography/mass spectroscopy analyses reveal that null mutations of ELO2 and ELO3 produce defects in the formation of very long chain fatty acids. Analysis of the null mutants indicates that these genes encode components of the membrane-bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Elo2p appears to be involved in the elongation of fatty acids up to 24 carbons. It appears to have the highest affinity for substrates with chain lengths less than 22 carbons. Elo3p apparently has a broader substrate specificity and is essential for the conversion of 24-carbon acids to 26-carbon species. Disruption of either gene reduces cellular sphingolipid levels and results in the accumulation of the long chain base, phytosphingosine. Null mutations in ELO3 result in accumulation of labeled precursors into inositol phosphoceramide, with little labeling in the more complex mannosylated sphingolipids, whereas disruption of ELO2 results in reduced levels of all sphingolipids.In the yeast Saccharomyces cerevisiae, sphingolipids comprise approximately 10% of the total membrane lipid species (1). The hydrophobic moiety of these lipids is ceramide, which consists of a long chain base coupled to a very long chain fatty acid that is almost exclusively 26:0 1 or hydroxy 26:0 (2). Although sphingolipids are relatively minor membrane lipid species, they are highly concentrated on the plasma membrane and appear to be essential for a number of critical membrane and cellular functions (3-5). Inhibition of sphingolipid biosynthesis results in growth inhibition and cell death (6, 7). Ceramide has also been implicated as a component of an essential cell signaling pathways in Saccharomyces (8).In wild type cells, most fatty acids are 12-18-carbon species that are found in glycerolipids. Those species appear to be formed de novo by the well characterized soluble cytoplasmic fatty acid synthase complex. The very long chain (20ϩ carbon) fatty acids found in sphingolipids, however, are formed by membrane-bound fatty acid elongation systems that are not well characterized. These enzyme systems extend 14 -18-carbon fatty acids by 2-carbon units by a sequence of reactions similar to those catalyzed by fatty acid synthases, with the exception of one reduction step, which in mammalian cells appears to be mediated by cytochrome b 5 (9).We recently identified a gene (ELO1) that encodes a membrane protein involved in the elongation of 14:0 to 16:0 (10). Comparison of the amino acid sequen...