Trypanosomes and Leishmania, the causative agents of several tropical diseases, lack the glutathione/glutathione reductase system but have trypanothione/ trypanothione reductase instead. The uniqueness of this thiol metabolism and the failure to detect thioredoxin reductases in these parasites have led to the suggestion that these protozoa lack a thioredoxin system. As presented here, this is not the case. A gene encoding thioredoxin has been cloned from Trypanosoma brucei, the causative agent of African sleeping sickness. The single copy gene, which encodes a protein of 107 amino acid residues, is expressed in all developmental stages of the parasite. The deduced protein sequence is 56% identical with a putative thioredoxin revealed by the genome project of Leishmania major. The relationship to other thioredoxins is low. T. brucei thioredoxin is unusual in having a calculated pI value of 8.5. The gene has been overexpressed in Escherichia coli. The recombinant protein is a substrate of human thioredoxin reductase with a K m value of 6 M but is not reduced by trypanothione reductase. T. brucei thioredoxin catalyzes the reduction of insulin by dithioerythritol, and functions as an electron donor for T. brucei ribonucleotide reductase. The parasite protein is the first classical thioredoxin of the order Kinetoplastida characterized so far.